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Calculation of diffusion effect for arbitrary pulse sequences
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Abstract

A method is presented for calculating the nuclear spin magnetization created by an arbitrary number of short radio frequency

pulses and of piecewise constant gradient applied in a selected direction. The isotropic diffusion, the transverse and longitudinal

relaxations as well as the global transport are taken into account. A thorough analysis of the magnetization density evolution results

in an algorithm for the analytical calculation of final NMR signal. Computationally, it requires only accumulating numerical co-

efficients in the found analytical structure. For arbitrary sequences this is done with a computer program. This approach, which can

be classified as symbolical computations, results in a high performance and in a practically unlimited accuracy. Results for sample

pulse sequences are presented.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Implementation of any new pulse sequence implies

understanding of the way in which the basic MR pa-

rameters of a homogeneous sample are represented in

the measured signal. While the account for the finite

relaxation times is available for all sequences in use,

finding the diffusion effect remains a challenging prob-

lem. It is only resolved for the gradient echo and spin
echo techniques [1,2], for the stimulated echo [3] and for

the steady-state precession with pulsed gradients [4–7].

In this paper, the NMR signal is found for a large

class of pulse sequences characterized by short radio

frequency (RF) pulses and a short gradient rise time.

The exact meaning of these limitations and a way to

release them are discussed below.

The presented calculation method is based on an
analytical solution to the Bloch–Torrey equation for a

constant gradient of magnetic field in the absence of RF

pulses. A generalization for the switched gradients and

an arbitrary number of RF pulses is achieved by con-

volving such solutions, the operation which is performed

by symbolical computations in Fourier space.

The developed technique is applied to two illustrative

examples. The first one is a train of pulses with an
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arbitrary flip angle. The diffusion effect for such a se-
quence is currently unknown. The other example is a

recently developed pulse sequence with smooth transi-

tion between pseudo steady states (TRAPS) [8].
2. Method

2.1. Pulse sequences

Consider a pulse sequence shown in Fig. 1. Suppose

that the duration of all RF pulses is shorter than any

other relevant time such as the diffusion time or the

duration of T2 weighting. In such a case, every RF pulses

can be described as an instant spin rotation. A similar

assumption for the gradients implies a short gradient

rise time. These assumptions are employed throughout
this paper and referred to as the instant switching, which

can be restriction can be released by representing a long

RF pulse with a train of weaker pulses and by a stepwise

increasing gradients. An additional limitation on the

considered class of sequences is that all gradient pulses

are applied in a single selected direction.

To sum up, the considered pulse sequences can be

described as a number, N , of events, which are either the
RF pulses or the gradient switching (Fig. 1). It is con-

venient to call all such events the RF pulses assigning a

zero flip angle to those which are actually absent.
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Fig. 1. The Stejskal–Tanner pulse sequence as an example of the assumed

sequence description. The applied pulses are shown with the vertical

bars. The dashed bars represent the formally added RF pulses with zero

flip angle, which serve as separators between the successive time inter-

vals. In each interval the applied gradient is constant, either g or zero.
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Keeping this terminology, the pulse sequence is sliced by

the instantly acting RF pulses in N successive time in-

tervals. The magnetization evolution in each interval is

governed by the diffusion in the constant gradient. An

analysis of the arbitrary sequence from this point of

view is presented below.

2.2. Basic equations

The observed signal is a sum of all individual spin

magnetizations. It is convenient to perform this sum-

mation in two steps engaging the notion of spin packets.

Consider the sample as consisting of infinitesimally

small volume elements, each of them smaller than any

relevant length, but still containing a large number of

spins. The spin content of each volume element is called
the spin packet. The overall sample magnetization in the

sample is obtainable by a double summation, first over

the spins in each packet and, second, over all packets.

The first RF pulse, which is applied at time t ¼ 0, ini-

tiates the evolution of nuclear magnetization. The spin

carrying molecules freely diffuse in the applied gradient.

Each spin is affiliated with its original spin packet

regardless its actual Brownian trajectory for t > 0. Let
Wðr; r0; tÞ be themagnetization density produced to a time

moment t at a point rby a spin packet originated at a point
r0. Initially Wðr; r0; 0Þ ¼ dðr� r0Þ. This implies that the

equilibriummagnetization density is set to unity, which is

the assumed normalization. In terms of Wðr; r0; 0Þ, the
total NMR signal, SðtÞ, takes the following form:

SðtÞ ¼
Z

dr0 drWðr; r0; tÞ: ð1Þ

Here
R
drWðr; r0; tÞ � mðr0; tÞ is the total spin packet

magnetization, while
R
dr0 accounts for all spin packets.

In the homogeneous medium all spin packets are
equivalent up to the phase factor, eikr0 , with k defined by

the applied gradient. Thus SðtÞ is equal to the Fourier

transform of the sample shape with a weight given by

mð0; tÞ. This signal is zero for infinitely large homoge-

neous sample considered here unless the spin echo is

formed. In such a case, the spin packet magnetization,

mðr0; tÞ, has an r0-independent component. The total

signal, which is then proportional to the sample volume,
can be represented by the magnetization mð0; tÞ of a
single spin packet positioned at the origin r0 ¼ 0. The
aim of the following analysis is to find this quantity for

the considered pulse sequence.

The spin magnetization evolves according to the

Bloch–Torrey equation [9] during each interpulse inter-

val. Being a three-dimensional vector, the spin packet

magnetization depends on variables r and t, and on r0 as

a parameter. The appropriate form of Bloch–Torrey

equation reads

ow
ot

¼ Dr2wþ igrIzw� 1

T2
I2zw� 1

T1
1
�

� I2z
�
w ð2Þ

for the low-frequency magnetization. Here w is the dif-

ference between the current and the equilibrium mag-
netization densities. Its exact meaning as well as that of

other quantities is as follows.

The first term on the right-hand side of Eq. (2) de-

scribes the conventional isotropic diffusion of magneti-

zation with a constant D. Laplacian operator r2 acts on

the variable r.

The next term describes the spin precession caused by

the applied gradient. The vector g is the gradient of the
Larmore frequency (which is the gradient of the mag-

netic field measured, e.g., in mT/m multiplied with the

gyromagnetic ratio, c). The combination gr is a scalar

product of the two vectors. The 3� 3 matrix Iz generates

the variation of magnetization vectors by the infinitesi-

mal rotations around the z-axis, which is selected in the

direction of the main field. The vector w rotated by a

small angle � is equal to ð1þ i�IzÞw plus the higher order
terms in �. Here 1 is the 3� 3 unity matrix. The explicit

form of Iz and one of its useful properties read

Iz ¼
0 i 0

�i 0 0

0 0 0

0
@

1
A; I2z ¼

1 0 0

0 1 0

0 0 0

0
@

1
A: ð3Þ

The way this formalism works is made clear by se-

lection only the precession term on the right-hand side

of Eq. (2):

ow
ot

¼ igrIzw: ð4Þ

This equation has a simple solution

wðtÞ ¼ eigrtIzwð0Þ: ð5Þ
Here the exponential function of matrix arises as a

multiple product of 1þ igrIz dt. This function can be

calculated as the Taylor expansion with an account for
the second property stated in Eq. (3):

eiaIz ¼ 1� I2z þ I2z cos aþ iIz sin a

¼
cos a � sin a 0

sin a cos a 0

0 0 1

0
@

1
A: ð6Þ

This is the conventional rotation matrix. Iz is propor-

tional to its derivative with respect to a. This property
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explains the mathematical name of Iz which is the gen-
erator of rotations around the z-axis.

The third and the fourth terms on the right-hand side

of Eq. (2) describe the transverse and the longitudinal

relaxations, respectively. They result in a factor in w in

the form

e�t=T2 0 0

0 e�t=T2 0

0 0 e�t=T1

0
@

1
A: ð7Þ

This multiplier is for simplicity omitted in the following
intermediate expressions.

Eq. (2) can now be solved for any initial condition.

To this end it is convenient to use a regular way con-

sisting in finding the unique fundamental solution of Eq.

(2) and convolving it with the given initial condition.

Since both the latter and the resulted magnetization are

three-dimensional vectors, the fundamental solution

should be a 3� 3 matrix. This solution, which is called
the Green function or the propagator, is selected by the

initial condition

wðr; r0; 0Þ ¼ 1 � dðr� r0Þ: ð8Þ
The solution of Eq. (2) for a magnetization density

gðr; tÞ takes the following form for the given initial

condition gðr; 0Þ

gðr; tÞ ¼
Z

dr0wðr; r0; tÞgðr0; 0Þ: ð9Þ

Here the convolution is performed for both the contin-

uous coordinate r0 (the integration) and the discrete

vector index of g (by the action of matrix w).
The explicit form of wðr; r0; tÞ is known for each in-

terpulse interval, that is for the constant gradient with-

out any RF pulses. A straightforward substitution in

Eq. (2) proves that

wðr; r0; tÞ ¼
1

4pDtð Þ3=2

exp

 
� ðr� r0Þ2

4Dt
þ igt

r� r0

2
Iz �

Dg2t3

12
I2z

!
eigr0tIz

� /ðr� r0; tÞeigr0tIz : ð10Þ

The latter form is introduced to display the structure of

w consisting of /, which is a function of displacement

r� r0, and of the r0-dependent phase factor. This factor

is a matrix which can be calculated using Eq. (6). The

meaning of the three columns of wðr; r0; tÞ is the mag-

netization density of the initially d-functional spin

packets magnetized in the directions of x, y, and z,
respectively.

The subtraction and the addition of the equilibrium

magnetization is done with the relation

Wðr; r0; tÞ ¼ M0 þ wðr; r0; tÞ; ð11Þ

where Wðr; r0; tÞ is the total magnetization matrix, and
M0 ¼
0 0 0

0 0 0

1 1 1

@ A: ð12Þ

The goal of this paper can now be formulated as to

find the function Wðr; r0; tÞ in the presence of RF

pulses. The solution is simple in principle. The mag-

netization created right after an RF pulse should be

considered as the initial condition for the evolution
during the following interpulse interval according to

Eqs. (11), (9), and (10). This procedure repeats itself

after the next RF pulse. Starting with the initial

equilibrium magnetization, it is possible to find

Wðr; r0; tÞ for the arbitrary combination of RF and

gradient pulses provided the assumption of the instant

switching is met. This program is fulfilled in the next

section.
2.3. Evolution of magnetization in Fourier space

It is convenient to perform all calculations in Fourier

space in which the convolution Eq. (9) turns in a

product. Consider an interpulse interval assigning t ¼ 0

to its beginning. Let now gðr0; 0Þ in Eq. (9) be the pre-

viously developed Green function of the Bloch–Torrey
equation (which is now the 3� 3 matrix). Performing

the convolution in Eq. (9) for the function defined in Eq.

(10) results in the following relation for the Fourier

transforms:

~wwðk; tÞ ¼
Z

dp ~//ðk; tÞdðk� p� gtIzÞ~ggðp; 0Þ: ð13Þ

Here the tilde marks the Fourier transform of the cor-

responding quantities. The d-function arises due to the

phase factor in Eq. (10). It should be understood as the

matrix Eq. (6) integrated with the additional phase
factors. It reads explicitly

dðDk � gtIzÞ

¼ 1

2

d� þ dþ id� � idþ 0

�id� þ idþ d� þ dþ 0

0 0 2dðDkÞ

0
B@

1
CA � D;

ð14Þ

where d� ¼ dðDk � gtÞ. The presence of the d-functions
in Eq. (13) removes the integration over p thus reduc-

ing the convolution to a product. It is convenient to

postpone this step keeping Eq. (13) for the following

analysis.

The evolution of magnetization density ~WWðk; tÞ, which
is the Fourier transform of Wðr; 0; tÞ, can be summarized

as a sequence of elementary operations on ~WWðk; tÞ.
Consider a building block of the pulse sequence, that is

an RF pulse with the following interpulse interval. In

each such block ~WWðk; tÞ can be calculated through the

following steps:
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~WW :¼OuðaÞ � ~WW rotation by the RF pulse;

~WW :¼ ~WW� ~MM0 subtraction of equilibrium magnetization;

~WW :¼D � ~WW action of matrix consisting of d-functions;

~WW :¼ ~// � ~WW evolution between the pulses;

~WW :¼ ~WWþ ~MM0 addition of equilibrium magnetization:

ð15Þ

Here the symbol :¼ denotes the assignment from the

right to the left-hand side. Matrix OuðaÞ performs the

global spin rotation by the angle a around the axis

with the phase u in the xy plane. It can be calculated as

follows:

OuðaÞ ¼ e�iuIz eiaIx eiuIz ; ð16Þ

where Ix is the matrix similar to Eq. (6), but generating

rotations around the x-axis

eiaIx ¼
1 0 0

0 cos a � sin a
0 sin a cos a

0
@

1
A: ð17Þ

The equilibrium magnetization ~MM0 takes the form

~MM0 ¼ M0dðkÞ: ð18Þ
The meaning of the product in Eq. (15) depends on the
context. It is the regular matrix product in the first and

the fourth lines. In the third line, it implies the convo-

lution as defined in Eq. (13).

The steps listed in Eq. (15) should be repeated for all

interpulse intervals. The initial value of ~WW before the

very first RF pulse defines the identity matrix

~WW ¼ 1 � dðkÞ; ð19Þ
which corresponds to the homogeneous magnetization.

The final ~WW should be taken at k ¼ 0 according to Eq.

(1) (this is the condition of echo formation).

It is the key issue of the present method that the

evolution matrix ~WW keeps its following form on each

step of procedure described in Eq. (15). ~WW is a 3� 3
matrix consisting of elements ~WWij, i; j ¼ 1; 2; 3, which are

linear combinations of d-functions:

~WWijðk; tÞ ¼
X
a

Ca
ijdðk � ja

ijÞ; ð20Þ

where ja
ij are some real numbers and the running index a

counts all terms with different ja
ij. This statement can be

proved by the mathematical induction as follows. First

note that the initial condition Eq. (19) falls in the form
Eq. (20). The same is valid for ~MM0. Thus the operations

in the first, the second, and the last lines of Eq. (15)

preserve this form. The multiplication with D is per-

formed according to Eq. (13), which turns into the fol-

lowing rule:Z
dpdðk � p � j1Þdðp � j0Þ ¼ dðk � j1 � j0Þ: ð21Þ
Here the first d-function comes from D, while the second
is a term of ~WW. This operation is equivalent to incre-

menting the previously accumulated j0 by the new

contribution j1. The coefficients in front of the d-func-
tions should be obviously multiplied. The form Eq. (20)

is also preserved by the multiplication with a function
~//ðkÞ in the fourth line of Eq. (15). It modifies solely the

coefficients Ca
ij in Eq. (20), since the function argument

can be replaced with the value defined by the d-function.
This completes the proof.

The algorithm formulated in Eq. (15) with the form

for the elements of W as defined in Eq. (20) provide a

regular analytical way to compute the signal for any

pulse sequence of the considered class. In praxis, the

calculations quickly become cumbersome as the number

of pulses increases thus hindering the pure analytical

calculus. To overcome this trouble, the routine compu-
tations can be delegated to a computer. This implies

keeping the analytical structure of all involved quantities

with only the coefficients Ca
ij and jaij in Eq. (20) com-

puted numerically. These values are subjected to addi-

tion and multiplication only. Consequently, there is no

inherent method error. The accuracy is limited by the

rounding error, which is typically of the order of 10�16

for the double precision numbers. In practical compu-
tations the required accuracy should be reduced by

several orders of magnitude in order to reliably collect

similar terms. This method yields the magnetization

matrix ~WWðk; tÞ to the time moment of signal acquisition.

Only the terms which are proportional to dðkÞ contrib-
ute to the signal according to the condition of echo

formation. Finally the third column of ~WW is selected, that

yields the magnetization of spins, which have been ini-
tially polarized along the z-direction. The above method

has been implemented as a C++ program in which the

objects entering Eq. (15) are described by means of C++

classes.

2.4. Account for global transport

The above approach can be extended to account for
uniform motion of all spins with a velocity v. Consider

the transport part of Eq. (2). It follows from the equa-

tion for the magnetization balance supplemented with a

formula for the magnetization flux density j:

ow
ot

¼ �Drj; ð22Þ

j ¼ �Drwþ vw: ð23Þ
Substitution of Eq. (23) in Eq. (22) results in

ow
ot

¼ Dr2w� vrwþ igrIzwþ � � � ; ð24Þ

where dots stand for the relaxation terms in Eq. (2). The

solution to this equation takes the form of Eq. (10) with

the function / replaced with
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/vðr� r0; tÞ ¼ /ðr� r0 � vt; tÞe�igvt2Iz=2: ð25Þ

Here the modified argument of / takes into account the

transport and the exponential factor describes the phase

acquired by spins moving in the constant gradient. The

Fourier transform of /ðr� r0 � vtÞ is ~//ðk; tÞe�ikvt. Since
any change in k is proportional to g (according to

Eq. (14)), the result actually depend on the component v

in the direction of g. Other velocity components do not

cause any encoding. Thus the problem is reduced to

considering the motion in the direction of applied gra-

dient. To sum up, the uniform transport does not

change the calculation scheme Eq. (15) resulting only in

the above modification of ~//.
3. Sample results

Application of the developed method to the Stejskal–

Tanner, stimulated echo and CPMG pulse sequences

has shown a perfect agreement with the analytically

known results. The computational performance depends
on whether the phases acquired in the applied gradients

are commensurate. In the extreme case of all commen-

surate phases, that is for the CPMG pulse sequences, the

computation time scales proportionally to the number

of applied RF pulses. On a 2GHz Pentium PC running

under Linux, it takes about 3 s for 4096 RF pulses with

275KB memory allocated.

3.1. Train of RF pulses with arbitrary flip angle

Sample calculations were applied to trains of N
a-pulses with a p=2 phase difference between the first and

all other pulses and a constantly applied gradient g (the

cursive letters denote the magnitudes of corresponding

vectors). The T1 and T2 relaxations were neglected. The

transverse magnetization in units of equilibrium magne-
tization, which is called hereafter the signal, S, is shown in
Fig. 2 as a function of N and a. The signal for N ¼ 1

(Fig. 2, left) vanishes since no echo is formed. For large N
Fig. 2. The signal, S, for the a-pulse train described in Section 3.1. Left:

The signal 40ms after the first pulse as a function of N for a ¼ p=2,
D ¼ 0 (top line) and D ¼ 2lm2=ms (bottom line). Right: The signal as

a function of a for N ¼ 10, D ¼ 2lm2=ms and gradient indicated in the

figure. The label g ¼ 0 implies the absence of any gradient. The line

labeled with g ¼ þ0 shows the limit for small, but finite g.
the magnetization reaches the steady state. No signal is
present for a ¼ 0 and a ¼ p (Fig. 2, right), as such pulses

create no transverse magnetization. For all other flip an-

gles, the signal dependence on the applied gradient is

singular at g ¼ 0, the feature which is well known for the

stimulated echo. In the absence of any gradient (g ¼ 0 in

the figure) all spin are flipped coherently. The final mag-

netization is just s ¼ ð1� ðcos a cosðN � 1ÞaÞ2Þ1=2. In the

infinite sample, any finite gradient eliminates the signal
from the magnetization components which do not form

the echo to the moment of acquisition. In praxis, the

gradient takes effect when gt is larger than the inverse

sample or voxel size. As it is seen in Fig. 2 right, the signal

never exceeds 0.5, the value reached for the stimulated

echo.

For given N and a the signal depends on a dimen-

sionless parameter Dg2Dt3, where Dt is the interpulse
interval. This gives reason for the notion of the b-factor.
Its effective value, which is defined as �ðln SÞ=D, is

shown in Fig. 3 as a function of a. It reaches the max-

imum near a ¼ 30 grad, with the maximal value about

fivefold smaller than that of the spin echo sequence.

The effect of global transport is illustrated in Fig. 4.

Note the signal increase for some values of a. This can
be understood as a constructive interference between the
transport-related dephasing and the multiple spin flip-

ping in the applied gradient. For a given velocity, in-

creasing the gradient results in complex oscillations of

the signal magnitude (Fig. 5). The characteristic period

can be assessed by treating the signal as a function of

dimensionless parameter gvt2.
Fig. 3. Ratio of effective b-factor to the b-factor of the spin echo

sequence, bSE, with similar TE and g as a function of a for N ¼ 10.

Fig. 4. Effect of global transport for the same sequence as in Fig. 2

right. The curves for g ¼ 40mT/m and g=c ¼ 200mT/m for v ¼ 0 are

reproduced with the dashed lines. The solid lines show the corre-

sponding dependencies for v ¼ 5mm/s.



Fig. 5. Effect of diffusion weighting gradient on the signal as a function

of the transport velocity for a ¼ 75 grad. The horizontal line corre-

sponds to the vanishing gradient, in which case the signal does not

depend on velocity. Increasing the gradient results in oscillations

illustrated for g=c ¼ 5mT/m (solid line) and g=c ¼ 10mT/m (dashed

line).

Fig. 6. An illustrative application of developed method to a TRAPS

sequence. The sequence consists of a p=2-pulse (not shown) followed

by a train of RF pulses with the phase p=2 relative to the first one.

Their flip angles are shown in the left figure. The first interpulse

interval is Dt=2, all other are equal to Dt. The right figure presents the
result for low, but nonzero gradient (g ¼ þ0), for g=c ¼ 40mT/m and

for g=c ¼ 200mT/m. Other parameters are Dt ¼ 8ms and

D ¼ 2lm2=ms.
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3.2. TRAPS sequence

The sequences employing the smooth transition be-

tween pseudo steady states (TRAPS) [8] consist of a
preparation period, during which the nuclear magneti-

zation reaches a pseudo steady state, followed by a train

of pulses with gradually changing flip angle (Fig. 6, left).

When interlaced with readout gradients, this allows for

imaging with a good contrast to noise ratio and a sig-

nificantly reduced specific absorption rate. In the present

example the gradient is constant simulating either an

applied or a susceptibility induced gradient.
The calculation result is presented in Fig. 6 in which

the echo magnitude is shown as a function of interpulse

interval number. The relatively small diffusion effect can

be explained as a consequence of the large flip angles

involved that have a noticeble refocusing effect.
4. Discussion

The present method is useful for calculating the spin

magnetization in homogeneous media created by com-

plex sequences of RF and gradient pulses. It combines
the advantages of numerical calculations with the ana-
lytical accuracy. The instant switching of the both kind

of pulses is assumed. This restriction can be released by

replacing the RF pulses with trains of low-flip-angle

pulses and by the stepwise gradient variation. This

would require additional computation resources and a

proper simulation of realistic pulses. The method can be

extended to account for the gradients and transport in

arbitrary directions and for the off-resonance precession.
This should not result in any significant reduction in the

performance or accuracy. Application to complex

practically used sequences such as hyperecho [10] will be

discussed elsewhere.

The analytical part of the developed method com-

plements the phase path technique [11] which is in-

valuable for theoretical analysis, but results in

increasingly cumbersome calculations for complicated
pulse sequences. The presented method does not ex-

plicitly count the phase paths. Instead, it employs the

Green function, the quantity that gives rise to them. The

correspondence between the two methods is transparent

in view of Eq. (20). The values jaij define the modes of

magnetization in k-space which are present to the given

time moment. The coefficients Ca
ij define their weights.

Plotting jaij as functions of time would reproduce the
conventional phase graph up to the obvious linear

transformation which is conventionally applied in the

phase graph technique in order to diagonalize the ro-

tation matrix defined in Eq. (6).
Acknowledgments

I am grateful to J. Hennig, M. Zaitsev, and

K. Scheffler for stimulation, help, and discussions.
References

[1] D.E. Woessner, Effects of diffusion in nuclear magnetic resonance

spin-echo experiments, J. Chem. Phys. 34 (1961) 2057–2061.

[2] E.O. Stejskal, J.E. Tanner, Spin diffusion measurements: spin echo

in the presence of a time-dependent field gradients, J. Chem. Phys.

42 (1965) 288–292.

[3] J.E. Tanner, Use of the stimulated echo in NMR diffusion studies,

J. Chem. Phys. 52 (1970) 2523–2526, Erratum: J. Chem. Phys. 57

(1972) 3586.

[4] H.Y. Carr, E.M. Purcell, Effects of diffusion on free precession in

nuclear magnetic resonance experiments, Phys. Rev. 94 (1954)

630–638.

[5] E.X. Wu, R.B. Buxton, Effect of diffusion on the steady-state

magnetization with pulsed field gradients, J. Magn. Reson. 90

(1990) 243–253.

[6] R.B. Buxton, The diffusion sensitivity of fast steady-state free

precession imaging, Magn. Reson. Med. 29 (1993) 235–243.

[7] Y. Zur, E. Bosak, N. Kaplan, A new diffusion SSFF imaging

technique, Magn. Reson. Med. 37 (1997) 716–722.

[8] J. Hennig, M. Weigel, K. Scheffler, Multiecho sequences with

variable refocusing flip angles: optimization of signal behavior



V.G. Kiselev / Journal of Magnetic Resonance 164 (2003) 205–211 211
using smooth transitions between pseudo steady states (TRAPS),

Magn. Reson. Med. 49 (2003) 527–535.

[9] H.C. Torrey, Bloch equations with diffusion terms, Phys. Rev. 104

(1956) 563–565.
[10] J. Hennig, K. Scheffler, Hyperechoes, Magn. Reson. Med. 46

(2001) 6–12.

[11] J. Hennig, Multiecho imaging sequences with low refocusing flip

angles, Magn. Reson. 78 (1988) 397–407.


	Calculation of diffusion effect for arbitrary pulse sequences
	Introduction
	Method
	Pulse sequences
	Basic equations
	Evolution of magnetization in Fourier space
	Account for global transport

	Sample results
	Train of RF pulses with arbitrary flip angle
	TRAPS sequence

	Discussion
	Acknowledgements
	References


